The ranks and kernels of generalized Hadamard matrices are studied. It is proved that any generalized Hadamard matrix H(q, λ) over Fq , q > 3, or q = 3 and gcd(3, λ) ≠ 1, generates a self-orthogonal code. This result puts a natural upper bound on the rank of the generalized Hadamard matrices. Lower and upper bounds are given for the dimension of the kernel of the corresponding generalized Hadamard codes. For specific ranks and dimensions of the kernel within these bounds, generalized Hadamard codes are constructed
Los sistemas de comunicación se nutren de técnicas algebraicas y combinat óricas para recuperar la i...
In this note, we study self-dual codes constructed from Hadamard matrices. We also give a classifica...
AbstractGiven an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q...
L'article pertany al grup de recerca Combinatorics, Coding and Security Group (CCSG)A subset of a ve...
Classical Hadamard matrices are orthogonal matrices whose elements are ±1. It is well-known that err...
This work deals with Hadamard Z₂Z₄Q₈-codes, which are binary codes after a Gray map from a subgroup ...
Altres ajuts: acord transformatiu CRUE-CSICZp^s-additive codes of length n are subgroups of (Zp^s)^n...
A power Hadamard matrix $H(x)$ is a square matrix of dimension $n$ with entries from Laurent polynom...
A new subclass of Hadamard full propelinear codes is introduced in this article. We define the HFP(2...
The existence is shown of a set of (pm — 1) generalized Hadamard matrices H(p, p2m) of order p2m, ea...
Publicació amb motiu de la 21st Conference on Applications of Computer Algebra (July 20-24, 2015, Ka...
AbstractFor primes p > 2, the generalized Hadamard matrix H(p,pt) can be expressed as H = xA, where ...
The Z2s -additive codes are subgroups of ℤZn2s, and can be seen as a generalization of linear codes ...
AbstractIt is shown that the row spaces of certain generalized weighing matrices, Bhaskar Rao design...
Publicació amb motiu del 4th International Castle Meeting (Palmela Castle, Portugal, 2014)Hadamard Z...
Los sistemas de comunicación se nutren de técnicas algebraicas y combinat óricas para recuperar la i...
In this note, we study self-dual codes constructed from Hadamard matrices. We also give a classifica...
AbstractGiven an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q...
L'article pertany al grup de recerca Combinatorics, Coding and Security Group (CCSG)A subset of a ve...
Classical Hadamard matrices are orthogonal matrices whose elements are ±1. It is well-known that err...
This work deals with Hadamard Z₂Z₄Q₈-codes, which are binary codes after a Gray map from a subgroup ...
Altres ajuts: acord transformatiu CRUE-CSICZp^s-additive codes of length n are subgroups of (Zp^s)^n...
A power Hadamard matrix $H(x)$ is a square matrix of dimension $n$ with entries from Laurent polynom...
A new subclass of Hadamard full propelinear codes is introduced in this article. We define the HFP(2...
The existence is shown of a set of (pm — 1) generalized Hadamard matrices H(p, p2m) of order p2m, ea...
Publicació amb motiu de la 21st Conference on Applications of Computer Algebra (July 20-24, 2015, Ka...
AbstractFor primes p > 2, the generalized Hadamard matrix H(p,pt) can be expressed as H = xA, where ...
The Z2s -additive codes are subgroups of ℤZn2s, and can be seen as a generalization of linear codes ...
AbstractIt is shown that the row spaces of certain generalized weighing matrices, Bhaskar Rao design...
Publicació amb motiu del 4th International Castle Meeting (Palmela Castle, Portugal, 2014)Hadamard Z...
Los sistemas de comunicación se nutren de técnicas algebraicas y combinat óricas para recuperar la i...
In this note, we study self-dual codes constructed from Hadamard matrices. We also give a classifica...
AbstractGiven an m×n matrix M over E=GF(qt) and an ordered basis A={z1,…,zt} for field E over K=GF(q...