Numerous time series models are available for forecasting economic output. Autoregressive models were initially applied to US gross national product (GNP), and have been extended to nonlinear structures, such as the self-exciting threshold autoregressive (SETAR) and Markov-switching autoregressive (MS-AR) models. We show that while these nonlinear models fit the in-sample data better than linear models, the out-of-sample forecast performance of extremely simple methods, such as the unconditional mean is competitive compared with both previously published linear and nonlinear models for GNP time series. Motivated by Occam′s razor and the forecasting competitiveness of the unconditional mean, we seek parsimonious models which are based on sim...