Maximum distance separable (MDS) array codes are widely used in storage systems due to their computationally efficient encoding and decoding procedures. An MDS code with r redundancy nodes can correct any r node erasures by accessing (reading) all the remaining information in the surviving nodes. However, in practice, e erasures are a more likely failure event, for some 1≤e<r . Hence, a natural question is how much information do we need to access in order to rebuild e storage nodes. We define the rebuilding ratio as the fraction of remaining information accessed during the rebuilding of e erasures. In our previous work, we constructed MDS codes, called zigzag codes, that achieve the optimal rebuilding ratio of 1/r for the rebuilding of any...