This thesis is composed of three chapters which propose some novel approaches to model and forecast financial time series. The first chapter focuses on high frequency financial returns and proposes a quantile regression approach to model their intraday seasonality and dynamics. The second chapter deals with the problem of forecasting the yield curve including large datasets of macroeconomics information. While the last chapter addresses the issue of modelling the term structure of interest rates. The first chapter investigates the distribution of high frequency financial returns, with special emphasis on the intraday seasonality. Using quantile regression, I show the expansions and shrinks of the probability law through the day for three ye...