Das Problem, alternierende Vorzeichenmatrizen fixer Größe zu zählen, zeichnet sich einerseits durch die Einfachheit der zugehörigen Abzählformel und andererseits durch die Komplexität ihres Beweises aus. Alternierende Vorzeichenmatrizen mit n Zeilen entsprechen umkehrbar eindeutig monotonen Dreiecken mit unterster Zeile (1,2,...,n). Fischers alternativer Beweis für das „Refined ASM Theorem“ basiert auf der Operatorformel für das Polynom alpha(n;k1,k2,…,kn) in n Variablen, dessen Auswertung an ganzzahligen Werten k1 < k2 < ... < kn gleich der Anzahl an monotonen Dreiecken mit unterster Zeile (k1,k2,...,kn) ist. Wir präsentieren zunächst die aktuellste Version dieses in sich abgeschlossenen Beweises für das „Refined ASM Theorem“. Anschließ...
The lattice of monotone triangles (�n, ≼) ordered by entry-wise comparisons is studied. Let τmin den...
Mathematiker, im besonderen Kombinatoriker, sind immer auf der Suche nach schönen Strukturen und For...
AbstractWe provide a simplified proof of our operator formula for the number of monotone triangles w...
Zu Beginn der 1980er Jahre führten W. Mills, D. Robbins und H. Rumsey den Begriff der alternierenden...
The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alp...
International audienceThe number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given...
AbstractWe study a further refinement of the standard refined enumeration of alternating sign matric...
AbstractZeilberger (1996) [12] proved the Refined Alternating Sign Matrix Theorem, which gives a pro...
AbstractIn the early 1980s, Mills, Robbins and Rumsey conjectured, and in 1996 Zeilberger proved a s...
AbstractWe show that the number of monotone triangles with prescribed bottom row (k1,…,kn)∈Zn, k1<k2...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
The lattice of monotone triangles (�n, ≼) ordered by entry-wise comparisons is studied. Let τmin den...
The lattice of monotone triangles (�n, ≼) ordered by entry-wise comparisons is studied. Let τmin den...
Mathematiker, im besonderen Kombinatoriker, sind immer auf der Suche nach schönen Strukturen und For...
AbstractWe provide a simplified proof of our operator formula for the number of monotone triangles w...
Zu Beginn der 1980er Jahre führten W. Mills, D. Robbins und H. Rumsey den Begriff der alternierenden...
The number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given by a polynomial $\alp...
International audienceThe number of Monotone Triangles with bottom row $k_1 < k_2 < ⋯< k_n$ is given...
AbstractWe study a further refinement of the standard refined enumeration of alternating sign matric...
AbstractZeilberger (1996) [12] proved the Refined Alternating Sign Matrix Theorem, which gives a pro...
AbstractIn the early 1980s, Mills, Robbins and Rumsey conjectured, and in 1996 Zeilberger proved a s...
AbstractWe show that the number of monotone triangles with prescribed bottom row (k1,…,kn)∈Zn, k1<k2...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
Four natural boundary statistics and two natural bulk statistics are considered for alternating sign...
The lattice of monotone triangles (�n, ≼) ordered by entry-wise comparisons is studied. Let τmin den...
The lattice of monotone triangles (�n, ≼) ordered by entry-wise comparisons is studied. Let τmin den...
Mathematiker, im besonderen Kombinatoriker, sind immer auf der Suche nach schönen Strukturen und For...
AbstractWe provide a simplified proof of our operator formula for the number of monotone triangles w...