In dieser Arbeit wird das Problem der Identifikation von "Quantitative Trait Loci" (QTLs) untersucht. In experimentellen Populationen können QTLs mithilfe multipler Regressionsanalyse lokalisiert werden. In diesem Zusammenhang hat sich in der Vergangenheit die Anwendung einer modifizierten Version des Bayesschen Informationskriteriums (mBIC) als Auswahlkriterium gut etabliert. Bisher wurden schrittweise Auswahlverfahren eingesetzt, um das Modell mit dem minimalen Wert des Auswahlkriteriums und infolge die mutmaßlichen QTLs zu finden. Obwohl schrittweise Auswahlverfahren in relativ geringer Zeit Lösungen produzieren, sind sie jedoch häufig nicht in der Lage, die global minimale Lösung zu finden. In dieser Arbeit wird ein Genetischer Algorith...
We present a multipoint algorithm to map quantitative trait loci (QTLs) using families from outbred ...
National audienceMany methods are offered to finely map loci implicated in the variability of quanti...
This thesis presents and discusses the use of various genetic models, high performance computing, gl...
In this talk we will discuss the problem of localizing genes influencing quantitative traits, so cal...
The Quantitative Trait Loci (QTL) mapping problem aims to identify regions in the genome that are li...
L’avènement du génotypage à haut débit permet aujourd’hui de mieux exploiter le phénomène d’associat...
Conventional genetic mapping methods typically assume parametric models with Gaussian errors, and ob...
Most traits of medical or economic importance are quantitative, i.e. they can be measured on a conti...
The existence of new technologies, implemented in efficient platforms and workflows has made massive...
We present a novel semiparametric method for quantitative trait loci (QTL) mapping in experimental c...
Although the interval mapping method is widely used for mapping quantitative trait loci (QTLs), it i...
In crop plants quantitative variation is a feature of many important traits, such as yield, quality ...
Quantitative trait loci (QTL) mapping is one of the applications of statistics in genetics.This diss...
This thesis concerns numerical methods for mapping of multiple quantitative trait loci, QTL. Interac...
Background Recent developments in genetic technology and methodology enable accurate detection of QT...
We present a multipoint algorithm to map quantitative trait loci (QTLs) using families from outbred ...
National audienceMany methods are offered to finely map loci implicated in the variability of quanti...
This thesis presents and discusses the use of various genetic models, high performance computing, gl...
In this talk we will discuss the problem of localizing genes influencing quantitative traits, so cal...
The Quantitative Trait Loci (QTL) mapping problem aims to identify regions in the genome that are li...
L’avènement du génotypage à haut débit permet aujourd’hui de mieux exploiter le phénomène d’associat...
Conventional genetic mapping methods typically assume parametric models with Gaussian errors, and ob...
Most traits of medical or economic importance are quantitative, i.e. they can be measured on a conti...
The existence of new technologies, implemented in efficient platforms and workflows has made massive...
We present a novel semiparametric method for quantitative trait loci (QTL) mapping in experimental c...
Although the interval mapping method is widely used for mapping quantitative trait loci (QTLs), it i...
In crop plants quantitative variation is a feature of many important traits, such as yield, quality ...
Quantitative trait loci (QTL) mapping is one of the applications of statistics in genetics.This diss...
This thesis concerns numerical methods for mapping of multiple quantitative trait loci, QTL. Interac...
Background Recent developments in genetic technology and methodology enable accurate detection of QT...
We present a multipoint algorithm to map quantitative trait loci (QTLs) using families from outbred ...
National audienceMany methods are offered to finely map loci implicated in the variability of quanti...
This thesis presents and discusses the use of various genetic models, high performance computing, gl...