Most rational expectations models involve equations in which the dependent variable is a function of its lags and its expected future value. We investigate the asymptotic bias of GMM and ML estimators in such models under misspecification. We consider several misspecifications, and focus more specifically on the case of omitted dynamics in the dependent variable. In a stylized DGP, we derive analytically the asymptotic biases of these estimators. We establish that in many cases of interest the two estimators of the degree of forward-lookingness are asymptotically biased in opposite direction with respect to the true value of the parameter. We also propose a quasi-Hausman test of misspecification based on the difference between the GMM and M...