In this thesis, we prove upper and lower bounds on the complexity of sequence similarity measures, the approximability of geometric problems on realistic inputs, and the performance of randomized broadcasting protocols. The first part approaches the question why a number of fundamental polynomial-time problems - specifically, Dynamic Time Warping, Longest Common Subsequence (LCS), and the Levenshtein distance - resists decades-long attempts to obtain polynomial improvements over their simple dynamic programming solutions. We prove that any (strongly) subquadratic algorithm for these and related sequence similarity measures would refute the Strong Exponential Time Hypothesis (SETH). Focusing particularly on LCS, we determine a tight running ...