This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally important population process, namely the Lotka-Volterra model. The stochastic version of this process appears to have far more intriguing properties than its deterministic counterpart. Indeed, the fact that a potential deterministic population explosion can be prevented by the presence of even a tiny amount of environmental noise shows the high level of difference which exists between these two representations
This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally importa...
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting ...
Population systems are often subject to environmental noise, and our aim is to show that (surprising...
AbstractThis paper examines the asymptotic behaviour of the stochastic extension of a fundamentally ...
This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally importan...
In this paper we stochastically perturb the classical Lotka{Volterra model x_ (t) = diag(x1(t); ; xn...
In this paper, we investigate a Lotka-Volterra system under regime switching dx(t) = diag(x1(t); : :...
AbstractWe reveal in this paper that the environmental noise will not only suppress a potential popu...
AbstractThis paper continues the study of Mao et al. investigating two aspects of the equationdx(t)=...
We reveal in this paper that the environmental noise will not only suppress a potential population e...
AbstractIn general, population systems are often subject to environmental noise. This paper consider...
AbstractIn this paper we stochastically perturb the delay Lotka–Volterra model x˙(t)=diag(x1(t),…,xn...
This is a continuation of our paper [Q. Luo, X. Mao, Stochastic population dynamics under regime swi...
AbstractThis paper investigates a stochastic Lotka–Volterra system with infinite delay, whose initia...
Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, s...
This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally importa...
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting ...
Population systems are often subject to environmental noise, and our aim is to show that (surprising...
AbstractThis paper examines the asymptotic behaviour of the stochastic extension of a fundamentally ...
This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally importan...
In this paper we stochastically perturb the classical Lotka{Volterra model x_ (t) = diag(x1(t); ; xn...
In this paper, we investigate a Lotka-Volterra system under regime switching dx(t) = diag(x1(t); : :...
AbstractWe reveal in this paper that the environmental noise will not only suppress a potential popu...
AbstractThis paper continues the study of Mao et al. investigating two aspects of the equationdx(t)=...
We reveal in this paper that the environmental noise will not only suppress a potential population e...
AbstractIn general, population systems are often subject to environmental noise. This paper consider...
AbstractIn this paper we stochastically perturb the delay Lotka–Volterra model x˙(t)=diag(x1(t),…,xn...
This is a continuation of our paper [Q. Luo, X. Mao, Stochastic population dynamics under regime swi...
AbstractThis paper investigates a stochastic Lotka–Volterra system with infinite delay, whose initia...
Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, s...
This paper examines the asymptotic behaviour of the stochastic extension of a fundamentally importa...
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting ...
Population systems are often subject to environmental noise, and our aim is to show that (surprising...