The interaction of quasi-steady abyssal ocean flow with submarine topography is expected to generate turbulent mixing in the ocean. This mixing may occur locally, close to topography, or via breaking quasi-steady lee waves that can carry energy into the ocean interior. There is currently no theoretical, or empirically derived, prediction for the relative amounts of local and interior mixing. We report measurements of the mixing rate in laboratory experiments with a topographic ridge towed through a density stratification. The experiments span three parameter regimes including linear lee waves, nonlinear flow and an evanescent regime in which wave radiation is weak. Full field density measurements provide the depth-dependence of energy loss ...