The main objective of this thesis is to propose approximations to option sensitivities in stochastic volatility models. The first part explores sequential Monte Carlo techniques for approximating the latent state in a Hidden Markov Model. These techniques are applied to the computation of Greeks by adapting the likelihood ratio method. Convergence of the Greek estimates is proved and tracking of option prices is performed in a stochastic volatility model. The second part defines a class of approximate Greek weights and provides high-order approximations and justification for extrapolation techniques. Under certain regularity assumptions on the value function of the problem, Greek approximations are proved for a fully implementable Monte ...