Motivated by the fact that in several cases a matching in a graph is stable if and only if it is produced by a greedy algorithm, we study the problem of computing a maximum weight greedy matching on weighted graphs, termed GREEDYMATCHING. In wide contrast to the maximum weight matching problem, for which many efficient algorithms are known, we prove that GREEDYMATCHING is strongly NP-hard and APX-complete, and thus it does not admit a PTAS unless P=NP, even on graphs with maximum degree at most 3 and with at most three different integer edge weights. Furthermore we prove that GREEDYMATCHING is strongly NP-hard if the input graph is in addition bipartite. Moreover we consider three natural parameters of the problem, for which we establish a ...