The traditional approach to multivariate extreme values has been through the multivariate extreme value distribution G, characterised by its spectral measure H and associated Pickands’ dependence function A. More generally, for all asymptotically dependent variables, H determines the probability of all multivariate extreme events. When the variables are asymptotically dependent and under the assumption of unit Fréchet margins, several methods exist for the estimation of G, H and A which use variables with radial component exceeding some high threshold. For each of these characteristics, we propose new asymptotically consistent nonparametric estimators which arise from Heffernan and Tawn’s approach to multivariate extremes that conditions on...