The state of the art work in cellular neural networks (CNN) has concentrated on VLSI implementations without really addressing the systems level . While efficient implementations have been reported, no reports have been presented on the use of these implementations for processing large complex images. The work hereby presented introduces a strategy to process large images using small CNN arrays. The approach, time-multiplexing, is prompted by the need to simulate hardware models and test hardware implementations of CNN. For practical size applications, due to hardware limitations, it is impossible to have a one-on-one mapping between the CNN hardware processors and all the pixels in the image involved. This paper presents a practical solut...