It has been shown that wide Single Instruction Multiple Data architectures (wide-SIMDs) can achieve high energy efficiency, especially in domains such as image and vision processing. In these and various other application domains, reduction is a frequently encountered operation, where multiple input elements need to be combined into a single element by an associative operation, e.g. addition or multiplication. There are many applications that require reduction such as: partial histogram merging, matrix multiplication and min/max-finding. Wide-SIMDs contain a large number of processing elements (PEs), which in general are connected by a minimal form of interconnect for scalability reasons. To efficiently support reduction operations on wide-...