We consider a queueing system with servers S={m1,...,mJ}, and with customer types C={a,b,...}. A bipartite graph G describes which pairs of server-customer types are compatible. We consider FCFS-ALIS policy: A server always picks the first, longest waiting compatible customer, and a customer is always assigned to the longest idle compatible server. We assume Poisson arrivals and server dependent exponential service times. We derive an explicit product-form expression for the stationary distribution of this system when service capacity is sufficient. We also calculate fluid limits of the system under overload, to show that local steady state exists. We distinguish the case of complete resource pooling when all the customers are served at the...