Intermittency effects are numerically studied in turbulent bubbling Rayleigh–Bénard (RB) flow and compared to the standard RB case. The vapour bubbles are modelled with a Euler–Lagrangian scheme and are two-way coupled to the flow and temperature fields, both mechanically and thermally. To quantify the degree of intermittency we use probability density functions, structure functions, extended self-similarity (ESS) and generalized extended self-similarity (GESS) for both temperature and velocity differences. For the standard RB case we reproduce scaling very close to the Obukhov–Corrsin values common for a passive scalar and the corresponding relatively strong intermittency for the temperature fluctuations, which are known to originate from ...