We present an experimental/numerical study of a dipolar flow structure in a shallow layer of electrolyte driven by electromagnetic forcing and subjected to background rotation. The aim of this study is to determine the influence of a non-conservative body force on the range of applicability of the classical Ekman boundary layer theory in rapidly rotating systems. To address this question, we study the response of the flow to the three control parameters: the magnitude of the forcing, the rotation rate of the system, and the shallowness of the layer. This response is quantified taking into account the magnitude of the flow velocity (represented by the Reynolds number), the symmetry between both vortex cores, and the vertical profile of the h...