We consider a stylized stochastic model for a wireless CSMA network. Experimental results in prior studies indicate that the model provides remarkably accurate throughput estimates for IEEE 802.11 systems. In particular, the model offers an explanation for the severe spatial unfairness in throughputs observed in such networks with asymmetric interference conditions. Even in symmetric scenarios, however, it may take a long time for the activity process to move between dominant states, giving rise to potential starvation issues. In order to gain insight in the transient throughput characteristics and associated starvation effects, we examine in the present paper the behavior of the transition time between dominant activity states. We focus on...