Organic electronic ratchets rectify time-correlated external driving forces, giving output powers that can drive electronic circuitry. In this work their performance characteristics are investigated using numerical modeling and measurements. It is shown how the characteristic parameters of the time–varying asymmetric potential like length scales and amplitude, as well as the density and mobility of the charge carriers in the device influence the performance characteristics. Various ratchet efficiencies and their relations are discussed. With all settings close to optimum, a ratchet with charge displacement and power efficiencies close to 50% and 7% respectively is obtained