We study a two-scale reaction-diffusion system with nonlinear reaction terms and a nonlinear transmission condition (remotely ressembling Henry’s law) posed at air-liquid interfaces. We prove the rate of convergence of the two-scale Galerkin method proposed in [7] for approximating this system in the case when both the microstructure and macroscropic domain are two-dimensional. The main difficulty is created by the presence of a boundary nonlinear term entering the transmission condition. Besides using the particular two-scale structure of the system, the ingredients of the proof include two-scale interpolation-error estimates, an interpolation-trace inequality, and improved regularity estimates