Stable isotope analysis (SIA) is a valuable tool in ecotoxicology because δ13C and δ15N may provide insights into the trophic transfer of contaminants in a food web. The relationship between a species’ trophic position (TP, determined from δ15N) and internal concentration of biomagnifying contaminants can be established and used for regulatory purposes. However, the exposure of organisms to xenobiotics incurs physiological costs, and the stable isotope signature of a consumer reflects not only diet but also a physiological state. The latter raises questions regarding the interpretation of stable isotope signatures in contaminated areas. Therefore, the aim of this Thesis was to evaluate the behaviour of consumers’ stable isotope signatures i...