Semi-supervised learning, which uses a small amount of labeled data in conjunction with a large amount of unlabeled data for training, has recently attracted huge research attention due to the considerable improvement in learning accuracy. In this work, we focus on semi-supervised variable weighting for clustering, which is a critical step in clustering as it is known that interesting clustering structure usually occurs in a subspace defined by a subset of variables. Besides exploiting both labeled and unlabeled data to effectively identify the real importance of variables, our method embeds variable weighting in the process of semi-supervised clustering, rather than calculating variable weights separately, to ensure the computation efficie...