Maximal biclique (also known as complete bipartite) subgraphs can model many applications in Web mining, business, and bioinformatics. Enumerating maximal biclique subgraphs from a graph is a computationally challenging problem, as the size of the output can become exponentially large with respect to the vertex number when the graph grows. In this paper, we efficiently enumerate them through the use of closed patterns of the adjacency matrix of the graph. For an undirected graph G without self-loops, we prove that 1) the number of closed patterns in the adjacency matrix of G is even, 2) the number of the closed patterns is precisely double the number of maximal biclique subgraphs of G, and 3) for every maximal biclique subgraph, there alway...