We consider the problem of conducting estimation and inference on the parameters of univariate heteroskedastic fractionally integrated time series models. We first extend existing results in the literature, developed for conditional sum-of-squares estimators in the context of parametric fractional time series models driven by conditionally homoskedastic shocks, to allow for conditional and unconditional heteroskedasticity both of a quite general and unknown form. Global consistency and asymptotic normality are shown to still obtain; however, the covariance matrix of the limiting distribution of the estimator now depends on nuisance parameters derived both from the weak dependence and heteroskedasticity present in the shocks. We then investi...