We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite interval, with potential having a strong negative singularity at one endpoint. This is the case of limit circle in H. Weyl sense. We establish that, unlike the case of an infinite interval, the asymptotics for positive eigenvalues does not depend on the potential and it is the same as in the regular case. The asymptotics of the negative eigenvalues may depend on the potential quite strongly, however there are always asymptotically fewer negative eigenvalues than positive ones. By unknown reasons this type of problems had not been studied previously
Es werden Spektrum und asymptotische Verteilung der Eigenwerte von singulären Sturm-Liouville-Eigenw...
WOS: 000307319000001In this study, discontinuous Sturm-Liouville problems with eigenvalue parameter ...
AbstractBy investigating the asymptotic properties of the eigenfunctions for a general class of nonl...
We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite interv...
AbstractWe consider the asymptotic form of the eigenvalues of the linear differential equation −y″(x...
AbstractWe derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued ...
AbstractWe consider the asymptotic form of the eigenvalues of the linear differential equation −y″(x...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
Abstract. We prove a new asymptotic formula for the eigenvalues of Sturm-Liouville prob-lem, which i...
For a particular family of long-range potentials $V$, we prove that the eigenvalues of the indefinit...
In this paper we obtain asymptotic estimates of eigenvalues for regular Sturm-Liouville problems hav...
International Conference on Advances in Natural and Applied Sciences (ICANAS) -- APR 21-23, 2016 -- ...
In this article we obtain asymptotic formulas of arbitrary order for eigenfunctions and eigenvalues ...
Es werden Spektrum und asymptotische Verteilung der Eigenwerte von singulären Sturm-Liouville-Eigenw...
WOS: 000307319000001In this study, discontinuous Sturm-Liouville problems with eigenvalue parameter ...
AbstractBy investigating the asymptotic properties of the eigenfunctions for a general class of nonl...
We find asymptotic formulas for the eigenvalues of the Sturm-Liouville operator on the finite interv...
AbstractWe consider the asymptotic form of the eigenvalues of the linear differential equation −y″(x...
AbstractWe derive eigenvalue asymptotics for Sturm–Liouville operators with singular complex-valued ...
AbstractWe consider the asymptotic form of the eigenvalues of the linear differential equation −y″(x...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite ...
Abstract. We prove a new asymptotic formula for the eigenvalues of Sturm-Liouville prob-lem, which i...
For a particular family of long-range potentials $V$, we prove that the eigenvalues of the indefinit...
In this paper we obtain asymptotic estimates of eigenvalues for regular Sturm-Liouville problems hav...
International Conference on Advances in Natural and Applied Sciences (ICANAS) -- APR 21-23, 2016 -- ...
In this article we obtain asymptotic formulas of arbitrary order for eigenfunctions and eigenvalues ...
Es werden Spektrum und asymptotische Verteilung der Eigenwerte von singulären Sturm-Liouville-Eigenw...
WOS: 000307319000001In this study, discontinuous Sturm-Liouville problems with eigenvalue parameter ...
AbstractBy investigating the asymptotic properties of the eigenfunctions for a general class of nonl...