We present formal verification methods and procedures for finding bounds of linear programs and proving nonlinear inequalities. An efficient implementation of formal arithmetic computations is also described. Our work is an integral part of the Flyspeck project (a formal proof of the Kepler conjecture) and we show how developed formal procedures solve formal computational problems in this project. We also introduce our implementation of SSReflect language (originally developed by G. Gonthier in Coq) in HOL Light
This talk shall discuss the potential impact of formal methods, and in particular, of interactive th...
We examine the relationship between proof and computation in mathematics, especially in formalized m...
This thesis studies the formalisation and execution of Linear Algebra algorithms in Isabelle/HOL, an...
We present formal verification methods and procedures for finding bounds of linear programs and prov...
The first three formalisations of major mathematical proofs have heralded a new age in formalised ma...
Linear programming is a basic mathematical technique for optimizing a linear function on a domain th...
Whereas early researchers in computability theory described effective computability in terms of such...
ABSTRACT V R Pratt has shown that the real and integer feastbdlty of sets of linear mequallUes ofthe...
We introduce a platform for presenting and cross-linking formal and informal proof developments toge...
Abstract. We introduce a platform for presenting and cross-linking for-mal and informal proof develo...
AbstractMathematical proofs often implicity contain constructions of objects with certain properties...
Linear arithmetic constraints in the form of equalities and inequalities constitute the vast majorit...
In this thesis, we study the close links between linear logic and on current constraint programming,...
We present a method for formal verification of transcendental hardware and software algorithms that ...
This paper describes an inter-procedural technique for computing symbolic bounds on the number of st...
This talk shall discuss the potential impact of formal methods, and in particular, of interactive th...
We examine the relationship between proof and computation in mathematics, especially in formalized m...
This thesis studies the formalisation and execution of Linear Algebra algorithms in Isabelle/HOL, an...
We present formal verification methods and procedures for finding bounds of linear programs and prov...
The first three formalisations of major mathematical proofs have heralded a new age in formalised ma...
Linear programming is a basic mathematical technique for optimizing a linear function on a domain th...
Whereas early researchers in computability theory described effective computability in terms of such...
ABSTRACT V R Pratt has shown that the real and integer feastbdlty of sets of linear mequallUes ofthe...
We introduce a platform for presenting and cross-linking formal and informal proof developments toge...
Abstract. We introduce a platform for presenting and cross-linking for-mal and informal proof develo...
AbstractMathematical proofs often implicity contain constructions of objects with certain properties...
Linear arithmetic constraints in the form of equalities and inequalities constitute the vast majorit...
In this thesis, we study the close links between linear logic and on current constraint programming,...
We present a method for formal verification of transcendental hardware and software algorithms that ...
This paper describes an inter-procedural technique for computing symbolic bounds on the number of st...
This talk shall discuss the potential impact of formal methods, and in particular, of interactive th...
We examine the relationship between proof and computation in mathematics, especially in formalized m...
This thesis studies the formalisation and execution of Linear Algebra algorithms in Isabelle/HOL, an...