In collaborative filtering recommender systems, there is little room for users to get involved in the choice of their peer group. It leaves users defenseless against various spamming or ''shilling'' attacks. Other social Web-based systems, however, allow users to self-select peers and build a social network. We argue that users' self-defined social networks could be valuable to increase the quality of recommendation in CF systems. To prove the feasibility of this idea we examined how similar are interests of users connected by self-defined relationships in a collaborative tagging systems Citeulike. Interest similarity was measured by similarity of items and meta-data they share and tags they use. Our study shows that users connected by soci...