This paper investigates asymptotic properties of the maximum likelihood estimator and the quasi-maximum likelihood estimator for the spatial autoregressive model. The rates of convergence of those estimators may depend on some general features of the spatial weights matrix of the model. It is important to make the distinction with different spatial scenarios. Under the scenario that each unit will be influenced by only a few neighboring units, the estimators may have $\sqrt{n}$ n -rate of convergence and be asymptotically normal. When each unit can be influenced by many neighbors, irregularity of the information matrix may occur and various components of the estimators may have different rates of convergence. Copyright The Econometric Socie...
The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial autoregression...
Spatial process, asymptotic normality, consistency, lattice sampling, stochastic difference equation...
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, ...
In this paper, we address a class of heterogeneous spatial autoregressive models with all n(n−1) spa...
Abstract The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spati...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
The (quasi-) maximum likelihood estimator (QMLE) for the autoregres-sive parameter in a spatial auto...
The (quasi-) maximum likelihood estimator (QMLE) for the autoregres-sive parameter in a spatial auto...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
This paper considers the problem of estimating a simultaneous spatial autoregressive model (SSAR). ...
E ¢ cient semiparametric and parametric estimates are developed for a spatial autoregressive model, ...
The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial autoregression...
Spatial process, asymptotic normality, consistency, lattice sampling, stochastic difference equation...
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, ...
In this paper, we address a class of heterogeneous spatial autoregressive models with all n(n−1) spa...
Abstract The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spati...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
The (quasi-) maximum likelihood estimator (QMLE) for the autoregres-sive parameter in a spatial auto...
The (quasi-) maximum likelihood estimator (QMLE) for the autoregres-sive parameter in a spatial auto...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
We propose profile quasi-maximum likelihood estimation of spatial autoregressive models that are par...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
The (quasi-) maximum likelihood estimator (MLE) for the autoregressive parameter in a spatial autore...
This paper considers the problem of estimating a simultaneous spatial autoregressive model (SSAR). ...
E ¢ cient semiparametric and parametric estimates are developed for a spatial autoregressive model, ...
The quasi-maximum likelihood estimator for the autoregressive parameter in a spatial autoregression...
Spatial process, asymptotic normality, consistency, lattice sampling, stochastic difference equation...
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, ...