The article analyzes optimal portfolio choice of utility maximizing agents in a general continuous-time financial market model under a joint budget and downside risk constraint. The risk constraint is given in terms of a class of convex risk measures. We do not impose any specific assumptions on the price processes of the underlying assets. We analyze under which circumstances the risk constraint is binding. We provide a closed-form solution to the optimization problem in a general semimartingale framework. For a complete market, the wealth maximization problem is equivalent to a dynamic portfolio optimization problem.Utility maximization Optimal portfolio choice Utility-based shortfall risk Convex risk measures Semimartingales
The effectiveness of utility-maximization techniques for portfolio management relies on our ability ...
This thesis consists of three parts. The first part studies the optimal portfolio selection of expec...
We develop a model of optimal asset allocation based on a utility framework. This applies to a more ...
The article analyzes optimal portfolio choice of utility maximizing agents in a general continuous-t...
This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the pre...
We consider a utility-maximization problem in a general semimartingale financial model, subject to c...
The paper investigates dynamic optimal portfolio strategies of utility maximi-zing portfolio manager...
In this paper we analyse the effects arising from imposing a Value-at-Risk constraint in an agent's ...
We consider the utility maximization problem for an investor who faces a solvency or risk constraint...
We impose dynamically, a shortfall constraint in terms of Tail Conditional Expectation on the portfo...
The problem of maximizing the expected utility from terminal wealth in the presence of a stochastic ...
36 pagesWe investigate optimal consumption and investment problems for a Black-Scholes market under ...
We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free fin...
We develop a model of optimal asset allocation based on a utility framework. This applies to a more ...
A drawdown constraint forces the current wealth to remain above a given function of its maximum to d...
The effectiveness of utility-maximization techniques for portfolio management relies on our ability ...
This thesis consists of three parts. The first part studies the optimal portfolio selection of expec...
We develop a model of optimal asset allocation based on a utility framework. This applies to a more ...
The article analyzes optimal portfolio choice of utility maximizing agents in a general continuous-t...
This paper considers dynamic optimal portfolio strategies of utility maximizing investors in the pre...
We consider a utility-maximization problem in a general semimartingale financial model, subject to c...
The paper investigates dynamic optimal portfolio strategies of utility maximi-zing portfolio manager...
In this paper we analyse the effects arising from imposing a Value-at-Risk constraint in an agent's ...
We consider the utility maximization problem for an investor who faces a solvency or risk constraint...
We impose dynamically, a shortfall constraint in terms of Tail Conditional Expectation on the portfo...
The problem of maximizing the expected utility from terminal wealth in the presence of a stochastic ...
36 pagesWe investigate optimal consumption and investment problems for a Black-Scholes market under ...
We discuss the portfolio selection problem of an investor/portfolio manager in an arbitrage-free fin...
We develop a model of optimal asset allocation based on a utility framework. This applies to a more ...
A drawdown constraint forces the current wealth to remain above a given function of its maximum to d...
The effectiveness of utility-maximization techniques for portfolio management relies on our ability ...
This thesis consists of three parts. The first part studies the optimal portfolio selection of expec...
We develop a model of optimal asset allocation based on a utility framework. This applies to a more ...