This paper proposes instrumental variable estimators for multiple linear regression models with errors in the explanatory variables, that require no extraneous information. As is very well known, the ordinary least squares estimator (OLS), which is based on the sample moments of order two, is unbiased when there are no errors in the variables, but it becomes biased and inconsistent when there are such errors [Fuller (1987)]. In contrast, the suggested estimators are based on higher sample moments and can be considered as a special type of instrumental variable estimator. They are consistent, under quite reasonable assumptions, when there are measurement errors. While most consistent estimators based on higher moments (HM) proposed previousl...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent de...
From the governing equations of the velocity field, one can not only expect a (highly) non-Gaussian ...
Dans la modélisation statistique, nous sommes le plus souvent amené à supposer que le phénomène étud...
Dans la modélisation statistique, nous sommes le plus souvent amené à supposer que le phénomène étud...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
En muchos campos cient cos, es habitual encontrar magnitudes caracterizadas por la evoluci on de ...
Source estimation and localization are a central problem in array signal processing, and in particul...
Le sujet des variables latentes est au cœur de cette thèse. Ces variables latentes (i.e., non observ...
In this thesis we consider several aspects of parameter estimation for statistics and machine learni...
Généralement, les mesures de risque sont considérées comme des mappings d'un ensemble de variables a...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent de...
From the governing equations of the velocity field, one can not only expect a (highly) non-Gaussian ...
Dans la modélisation statistique, nous sommes le plus souvent amené à supposer que le phénomène étud...
Dans la modélisation statistique, nous sommes le plus souvent amené à supposer que le phénomène étud...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
Mención Internacional en el título de doctorIn recent years, the advances in data collection technol...
En muchos campos cient cos, es habitual encontrar magnitudes caracterizadas por la evoluci on de ...
Source estimation and localization are a central problem in array signal processing, and in particul...
Le sujet des variables latentes est au cœur de cette thèse. Ces variables latentes (i.e., non observ...
In this thesis we consider several aspects of parameter estimation for statistics and machine learni...
Généralement, les mesures de risque sont considérées comme des mappings d'un ensemble de variables a...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...
We are living in a data deluge era where the dimensionality of the data gathered by inexpensive sens...