Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatilit...
This paper provides (i) new results on the structure of optimal portfolios, (ii) economic insights o...
We consider a class of differential games with transition equations that are homogeneous of degree o...
We propose finite sample tests and confidence sets for models with unobserved and generated regresso...
Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer...
Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditi...
In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. ...
We aim at modelling fat-tailed densities whose distributions are unknown but are potentially asymmet...
In this paper, we test the international conditional CAPM model of Dumas and Solnik (1993) and the i...
In this paper, we propose several finite-sample specification tests for multivariate linear regressi...
Dans cet article, nous considérons l'agrégation temporelle des modèles de volatilité. Nous introduis...
We discuss statistical inference problems associated with identification and testability in economet...
Unlike European-type derivative securities, there are no simple analytic valuation formulas for Amer...
Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent de...
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfol...
One of the early examples of stochastic volatility models is Clark [1973]. He suggested that asset p...
This paper provides (i) new results on the structure of optimal portfolios, (ii) economic insights o...
We consider a class of differential games with transition equations that are homogeneous of degree o...
We propose finite sample tests and confidence sets for models with unobserved and generated regresso...
Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer...
Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditi...
In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. ...
We aim at modelling fat-tailed densities whose distributions are unknown but are potentially asymmet...
In this paper, we test the international conditional CAPM model of Dumas and Solnik (1993) and the i...
In this paper, we propose several finite-sample specification tests for multivariate linear regressi...
Dans cet article, nous considérons l'agrégation temporelle des modèles de volatilité. Nous introduis...
We discuss statistical inference problems associated with identification and testability in economet...
Unlike European-type derivative securities, there are no simple analytic valuation formulas for Amer...
Nous proposons, pour les modèles de régression linéaire où les variables explicatives contiennent de...
In this paper we propose exact likelihood-based mean-variance efficiency tests of the market portfol...
One of the early examples of stochastic volatility models is Clark [1973]. He suggested that asset p...
This paper provides (i) new results on the structure of optimal portfolios, (ii) economic insights o...
We consider a class of differential games with transition equations that are homogeneous of degree o...
We propose finite sample tests and confidence sets for models with unobserved and generated regresso...