We use a white noise approach to Malliavin calculus to prove the following white noise generalization of the Clark-Haussmann-Ocone formula \[F(\omega)=E[F]+\int_0^TE[D_tF|\F_t]\diamond W(t)dt\] Here E[F] denotes the generalized expectation, $D_tF(\omega)={{dF}\over{d\omega}}$ is the (generalized) Malliavin derivative, $\diamond$ is the Wick product and W(t) is 1-dimensional Gaussian white noise. The formula holds for all $f\in{\cal G}^*\supset L^2(\mu)$, where ${\cal G}^*$ is a space of stochastic distributions and $\mu$ is the white noise probability measure. We also establish similar results for multidimensional Gaussian white noise, for multidimensional Poissonian white noise and for combined Gaussian and Poissonian noise. Finally we giv...