La thèse est portée essentiellement sur la stabilisation et la contrôlabilité de deux équations des ondes moyennant un seul contrôle agissant sur le bord du domaine. Dans le cas du contrôle dynamique, le contrôle est introduit dans le système par une équation différentielle agissant sur le bord. C'est en effet un système hybride. Le contrôle peut être aussi applique directement sur le bord d'une équation, c'est le cas du contrôle indirecte mais non borne. La nature du système ainsi coupledépend du couplage des équations, et ceci donne divers résultats par la stabilisation (exponentielle et polynomiale) et la contrôlabilité exacte (espace contrôlable). Des nouvelles inégalités d'énergie permettent de mettre en oeuvre la Méthode fréquentielle...