An approach, with the basic idea of resampling wavelet neural parameters, was proposed for probabilistic forecasting of hydrologic time series by the wavelet neural model. Parameters in wavelet neural model are assumed as following uniform distribution, and both proper convergence criterion and likelihood function are used to train the wavelet neural structure and judge the acceptance of parameter set. By training and learning wavelet neural structure as many times (i.e., resampling neural parameters) until becoming stable, all sets of wavelet neural parameters are composed as the resampling results, based on which probabilistic forecasting of hydrologic time series is attained. Optimal forecasting result can be gained by computing mathemat...