Ataxia-telangiectasia (A-T) is a rare hereditary, early onset neurodegenerative disorder caused by inactivation of the ATM serine/threonine protein kinase, which is the major regulator of the DNA damage response to double-strand breaks (DSBs) and works in sensing and signaling oxidative stress. Disease models are essential for unraveling the mechanisms underlying the neuropathology, but ATM knockout mice do not recapitulate the central nervous system phenotype and neural stem cells are very heterogeneous. In this work we applied a reprogramming approach to generate an in vitro human A-T model in order to investigate the outcome of ATM ablation in neurons. We derived induced pluripotent stem cells from A-T and normal control fibroblasts by i...