Application specific hardware implementations are an increasingly popular way of reducing execution time and power consumption in embedded systems. This application specific hardware typically consumes a small fraction of the execution time and power consumption that the equivalent software code would require. Modern electronic design automation (EDA) tools can be used to apply a variety of transformations to hardware blocks in an effort to achieve additional performance and power savings. A number of such transformations require a tool with knowledge of the designs' timing characteristics. This thesis describes a static timing analyzer and two timing analysis based design automation tools. The static timing analyzer estimates the worst-cas...