Abstract: In the present paper branching of solutions of operator equations of the specific kind (which are applied in quantum transport theory) in complete metrizable spaces is investigated. The possibility of increasing Fredholm operator kernel dimension for post-critical values of parameter argument is analyzed. For the case of weakly continuous perturbations of this map local existence of two branches of equation which connected with summary operator is demonstrated.Note: Research direction:Mathematical problems and theory of numerical method
Three principles of solvability of operator equations are considered. The first is connected with th...
A discussion of properties of operator solutions, of relations between operator solutions, and of th...
Analog of Grobman-Hartman theorem about stable and unstable manifolds solutions for differential equ...
Abstract: Bifurcations in the families of local Fredholm analytic operators are considered...
Abstract: In the present paper bifurcation in families of non-Fredholm Frechet-analytic ma...
Abstract: In the present paper the phenomenon of branching of abstract steady-state kineti...
Abstract: The present paper is dedicated for basic aspects of theory of branching of solut...
AbstractA general bifurcation theorem for potential operators is proved. It describes the possible b...
We prove a global bifurcation result for an equation of the type Lx+λ(h(x)+k(x))=0, where L:Eâ€...
We compute the parity of a path of Fredholm operators in terms of its index bundle. The result is ap...
AbstractTwo types of dissipation of a diffusion process on an abstract space are discussed. The main...
We modify an argument for multiparameter bifurcation of Fredholm maps by Fitzpatrick and Pejsachowic...
Abstract: We study critical phenomena and bifurcations of solutions of ordinary differenti...
AbstractThe abstract Hilbert space equation (Tƒ)′(x) = −(Aƒ)(x), x∈R+, is studied with a partial ran...
The smooth Fredholm's equation, representing various kinds of mathematical physics equations, is con...
Three principles of solvability of operator equations are considered. The first is connected with th...
A discussion of properties of operator solutions, of relations between operator solutions, and of th...
Analog of Grobman-Hartman theorem about stable and unstable manifolds solutions for differential equ...
Abstract: Bifurcations in the families of local Fredholm analytic operators are considered...
Abstract: In the present paper bifurcation in families of non-Fredholm Frechet-analytic ma...
Abstract: In the present paper the phenomenon of branching of abstract steady-state kineti...
Abstract: The present paper is dedicated for basic aspects of theory of branching of solut...
AbstractA general bifurcation theorem for potential operators is proved. It describes the possible b...
We prove a global bifurcation result for an equation of the type Lx+λ(h(x)+k(x))=0, where L:Eâ€...
We compute the parity of a path of Fredholm operators in terms of its index bundle. The result is ap...
AbstractTwo types of dissipation of a diffusion process on an abstract space are discussed. The main...
We modify an argument for multiparameter bifurcation of Fredholm maps by Fitzpatrick and Pejsachowic...
Abstract: We study critical phenomena and bifurcations of solutions of ordinary differenti...
AbstractThe abstract Hilbert space equation (Tƒ)′(x) = −(Aƒ)(x), x∈R+, is studied with a partial ran...
The smooth Fredholm's equation, representing various kinds of mathematical physics equations, is con...
Three principles of solvability of operator equations are considered. The first is connected with th...
A discussion of properties of operator solutions, of relations between operator solutions, and of th...
Analog of Grobman-Hartman theorem about stable and unstable manifolds solutions for differential equ...