Artificial neural networks are usually applied to solve complex problems. In problems with more complexity, by increasing the number of layers and neurons, it is possible to achieve greater functional efficiency. Nevertheless, this leads to a greater computational effort. The response time is an important factor in the decision to use neural networks in some systems. Many argue that the computational cost is higher in the training period. However, this phase is held only once. Once the network trained, it is necessary to use the existing computational resources efficiently. In the multicore era, the problem boils down to efficient use of all available processing cores. However, it is necessary to consider the overhead of parallel computing....
The multilayer perceptron (MLP) neural network is an important classical architecture of artificial ...
Colloque avec actes et comité de lecture. internationale.International audienceThe aim of the paper ...
The training phase in Deep Neural Networks has become an important source of computing resource usag...
As redes neurais artificiais geralmente são aplicadas à solução de problemas comple- xos. Em problem...
This work compares classical feedforward neural networks with an algorithm that permit exploit para...
An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the b...
Este estudo foi realizado com a criação de um modelo de Rede Neural Artificial (RNA) do tipo Multila...
This paper reports on methods for the parallelization of artificial neural networks algorithms using...
The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI),...
Feedforward and multi-layer artifcial neural networks (RNA-MFF) have been shown to be powerful in th...
Monografia (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia...
Este trabalho analisa o uso de redes de estações de trabalho como uma única máquina a ser utilizada ...
W artykule wskazano na pewne aspekty związane z implementacją jednokierunkowej sieci neuronowej w ar...
Fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spu...
Cette dernière décennie a donné lieu à la réémergence des méthodes d'apprentissage machine basées su...
The multilayer perceptron (MLP) neural network is an important classical architecture of artificial ...
Colloque avec actes et comité de lecture. internationale.International audienceThe aim of the paper ...
The training phase in Deep Neural Networks has become an important source of computing resource usag...
As redes neurais artificiais geralmente são aplicadas à solução de problemas comple- xos. Em problem...
This work compares classical feedforward neural networks with an algorithm that permit exploit para...
An Artificial Neural Network (ANN) is a learning paradigm and automatic processing inspired in the b...
Este estudo foi realizado com a criação de um modelo de Rede Neural Artificial (RNA) do tipo Multila...
This paper reports on methods for the parallelization of artificial neural networks algorithms using...
The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI),...
Feedforward and multi-layer artifcial neural networks (RNA-MFF) have been shown to be powerful in th...
Monografia (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia...
Este trabalho analisa o uso de redes de estações de trabalho como uma única máquina a ser utilizada ...
W artykule wskazano na pewne aspekty związane z implementacją jednokierunkowej sieci neuronowej w ar...
Fast response, storage efficiency, fault tolerance and graceful degradation in face of scarce or spu...
Cette dernière décennie a donné lieu à la réémergence des méthodes d'apprentissage machine basées su...
The multilayer perceptron (MLP) neural network is an important classical architecture of artificial ...
Colloque avec actes et comité de lecture. internationale.International audienceThe aim of the paper ...
The training phase in Deep Neural Networks has become an important source of computing resource usag...