In this dissertation we study closure properties of pointclasses, scales on sets of reals and the models L[T2n], which are very natural canonical inner models of ZFC. We first characterize projective-like hierarchies by their associated ordinals. This solves a conjecture of Steel and a conjecture of Kechris, Solovay, and Steel. The solution to the first conjecture allows us in particular to reprove a strong partition property result on the ordinal of a Steel pointclass and derive a new boundedness principle which could be useful in the study of the cardinal structure of L(R). We then develop new methods which produce lightface scales on certain sets of reals. The methods are inspired by Jackson’s proof of the Kechris-Martin theorem. We then...