We describe a new approach to scalable data analysis that enables scientists to manage the explosion in size and complexity of scientific data produced by experiments and simulations. Our approach uses a novel combination of efficient query technology and visualization infrastructure. The combination of bit map indexing, which is a data management technology that accelerates queries on large scientific datasets, with a visualization pipeline for generating images of abstract data results in a tool suitable for use by scientists in fields where data size and complexity poses a barrier to efficient analysis. Our architecture and implementation, which we call DEX (short for dexterous data explorer), directly addresses the problem of ''too much...