There is growing interest in microfabricated devices that perform chemical and biochemical analysis. The general goal is to use microfabrication tools to construct miniature devices that can perform a complete analysis starting with an unprocessed sample. Such devices have been referred to as lab-on-a-chip devices. Initial efforts on microfluidic laboratory-on-a-chip devices focused on chemical separations. There are many potential applications of these fluidic microchip devices. Some applications such as chemical process control or environmental monitoring would require that a chip be used over an extended period of time or for many analyses. Other applications such as forensics, clinical diagnostics, and genetic diagnostics would employ t...