Probabilistic Graphical Models (PGMs) are commonly used in machine learning to solve problems stemming from medicine, meteorology, speech recognition, image processing, intelligent tutoring, gambling, games, and biology. PGMs are applicable for both directed graph and undirected graph. In this work, I focus on the undirected graphical model. The objective of this work is to study how PGMs can be applied to find solutions to two puzzle problems, sudoku and jigsaw puzzles. First, both puzzle problems are represented as undirected graphs, and then I map the relations of nodes to PGMs and Belief Propagation (BP). This work represents the puzzle grid as a bipartite graph, which contains disjoint sets S and C such that the graph’s edges connect v...