En esta tesis nos enfocamos en los aspectos algorítmicos de algunos de los tópicos más importantes del álgebra conmutativa. Estudiamos el cálculo de radicales y primos y minimales, la normalización de anillos e ideales y otros problemas relacionados. En los últimos años, se desarrollaron varios programas de álgebra computacional con implementaciones muy eficientes de las herramientas básicas para trabajar con polinomios, ideales y anillos. Esto renovó el interés por algoritmos eficientes para resolver algunos problemas difíciles del área. Proponemos nuevos algoritmos para algunos de estos problemas, basándonos en ideas matemáticas y resultados nuevos. Hemos implementado todos los algoritmos en esta tesis en Singular (Decker et al., 2011), u...