We propose a stochastic control approach to the dynamic maximization of robust utility functionals that are defined in terms of logarithmic utility and a dynamically consistent convex risk measure. The underlying market is modeled by a diffusion process whose coefficients are driven by an external stochastic factor process. In particular, the market model is incomplete. Our main results give conditions on the minimal penalty function of the robust utility functional under which the value function of our problem can be identified with the unique classical solution of a quasilinear PDE within a class of functions satisfying certain growth conditions. The fact that we obtain classical solutions rather than viscosity solutions is important for ...