A finite-dimensional Lie algebra L over a field F of characteristic zero is called elementary if each of its subalgebras has trivial Frattini ideal; it is an A-algebra if every nilpotent subalgebra is abelian. This paper is a continuation of the study of these algebras initiated by the authors in a previous paper. If we denote by $\mathcal{A}$, $\mathcal{G}$, $\mathcal{E}$, $\mathcal{L}$, $\Phi$ the classes of A-algebras, almost algebraic algebras, E-algebras, elementary algebras and $\phi$-free algebras respectively, then it is shown that: \mathcal{L} \subset \Phi \subset \mathcal{G} \mathcal{L} \subset \mathcal{A} \subset \mathcal{E} \mathcal{G} \cap \mathcal{A} = \mathcal{L}. It is also shown that if L is a semisimple Lie algebra all of ...