This paper describes continuous speech recognition incorporating the additional complement information, e.g., voice characteristics, speaking styles, linguistic information and noise environment, into HMM-based acoustic modeling. In speech recognition systems, context-dependent HMMs, i.e., triphone, and the tree-based context clustering have commonly been used. Several attempts to utilize not only phonetic contexts, but additional complement information based on context (factor) dependent HMMs have been made in recent years. However, when the additional factors for testing data are unobserved, methods for obtaining factor labels is required before decoding. In this paper, we propose a model integration technique based on general factor depe...