V diplomskem delu definiramo Liejevo in asociativno algebro ter opišemo povezavo med njima. Vpeljemo linearne Liejeve algebre in strukturne konstante. Nato definiramo odvajanja, (pol)direktne vsote, avtomorfizme Liejevih algeber in upodobitve Liejevih algeber. V nadaljevanju spoznamo omejene Liejeve algebre in definiramo posplošeno Jacobson-Wittovo algebro, ki se imenuje tudi algebra posebnih odvajanj.In the diploma work we define a Lie algebra and we describe the relation between them. We construct linear Lie algebras and strukture constants. After that we define derivations, (semi)direct sums, automorphisms of Lie algebras and representations of Lie algebras. In the sequel we become familiar with restricted Lie algebras and we define the ...
AbstractThe class of so-called Lie–Jordan algebras, which have one binary (Lie) operation [x,y] and ...
AbstractLetKbe a field, letAbe an associative, commutativeK-algebra, and let Δ be a nonzeroK-vector ...
summary:Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field...
Tema ovog rada su Liejeve algebre. U prvom poglavlju se uvodi pojam Liejevealgebre te se navode nek...
We classify ail the pairs of a commutative associative algebra with an identity element and its fini...
U ovom radu proučavamo Wittovu, Heisenbergovu i Virasorovu algebru. U prvom poglavlju bavimo se osno...
In this paper we study (sigma,tau)-derivations on algebras from an abstract point of view. After som...
AbstractWe classify all the pairs of a commutative associative algebra with an identity element and ...
Abstract. Let K be a eld, let A be an associative, commutative K-algebra and let be a nonzero K-vec...
Abstract. Let K be a eld, let A be an associative, commutative K-algebra and let be a nonzero K-vec...
AbstractLet K be a field, let A be an associative, commutative K-algebra, and let Δ be a nonzero K-v...
International audienceIn this paper we study Lie-admissible structures on Witt type algebras. Witt t...
The Witt algebra d of rank d(≥ 1) is the derivation algebra of Laurent polynomial algebras in d comm...
Ovim radom smo proučili Liejeve algebre i njezine reprezentacije. Pokazali smo kako računamo korijen...
U ovom završnom radu najprije su uvedeni osnovni pojmovi potrebni za bolje razumijevanje sadržaja. Z...
AbstractThe class of so-called Lie–Jordan algebras, which have one binary (Lie) operation [x,y] and ...
AbstractLetKbe a field, letAbe an associative, commutativeK-algebra, and let Δ be a nonzeroK-vector ...
summary:Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field...
Tema ovog rada su Liejeve algebre. U prvom poglavlju se uvodi pojam Liejevealgebre te se navode nek...
We classify ail the pairs of a commutative associative algebra with an identity element and its fini...
U ovom radu proučavamo Wittovu, Heisenbergovu i Virasorovu algebru. U prvom poglavlju bavimo se osno...
In this paper we study (sigma,tau)-derivations on algebras from an abstract point of view. After som...
AbstractWe classify all the pairs of a commutative associative algebra with an identity element and ...
Abstract. Let K be a eld, let A be an associative, commutative K-algebra and let be a nonzero K-vec...
Abstract. Let K be a eld, let A be an associative, commutative K-algebra and let be a nonzero K-vec...
AbstractLet K be a field, let A be an associative, commutative K-algebra, and let Δ be a nonzero K-v...
International audienceIn this paper we study Lie-admissible structures on Witt type algebras. Witt t...
The Witt algebra d of rank d(≥ 1) is the derivation algebra of Laurent polynomial algebras in d comm...
Ovim radom smo proučili Liejeve algebre i njezine reprezentacije. Pokazali smo kako računamo korijen...
U ovom završnom radu najprije su uvedeni osnovni pojmovi potrebni za bolje razumijevanje sadržaja. Z...
AbstractThe class of so-called Lie–Jordan algebras, which have one binary (Lie) operation [x,y] and ...
AbstractLetKbe a field, letAbe an associative, commutativeK-algebra, and let Δ be a nonzeroK-vector ...
summary:Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field...