There is substantial evidence that many time series associated with financial and insurance claim data are fat-tailed, with a (much) higher probability of " outliers' compared with the normal distribution. However, standard tests, or variants of them, for the presence of unit roots assume a normal distribution for the innovations driving the series. Application of the former to the latter therefore involves an inconsistency. We assess the impact of this inconsistency and provide information on its impact on inference when innovations are drawn from the Cauchy and sequence of t(v) distributions. A simple prediction that fat tails will uniformly lead to over-sizing of standard tests (because the fatness in the tail translates to the test dist...