We study a class of program schemes, NPSB, in which, aside from basic assignments, non-deterministic guessing and while loops, we have access to arrays; but where these arrays are binary write-once in that they are initialized to 'zero' and can only ever be set to 'one'. We show, amongst other results, that: NPSB can be realized as a vectorized Lindstr\"{o}m logic; there are problems accepted by program schemes of NPSB that are not definable in the bounded-variable infinitary logic $\mathcal{L}^\omega_{\infty\omega}$; all problems accepted by the program schemes of NPSB have asymptotic probability $1$; and on ordered structures, NPSB captures the complexity class $\mbox{{\bf L}}^{\mbox{\scriptsize{\bf NP}\normalsize}}$. We give equivalences...